3.132 \(\int \frac{(d+c^2 d x^2)^{3/2} (a+b \sinh ^{-1}(c x))}{x} \, dx\)

Optimal. Leaf size=249 \[ -\frac{b d \sqrt{c^2 d x^2+d} \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 x^2+1}}+\frac{b d \sqrt{c^2 d x^2+d} \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 x^2+1}}+\frac{1}{3} \left (c^2 d x^2+d\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 d \sqrt{c^2 d x^2+d} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{c^2 x^2+1}}-\frac{b c^3 d x^3 \sqrt{c^2 d x^2+d}}{9 \sqrt{c^2 x^2+1}}-\frac{4 b c d x \sqrt{c^2 d x^2+d}}{3 \sqrt{c^2 x^2+1}} \]

[Out]

(-4*b*c*d*x*Sqrt[d + c^2*d*x^2])/(3*Sqrt[1 + c^2*x^2]) - (b*c^3*d*x^3*Sqrt[d + c^2*d*x^2])/(9*Sqrt[1 + c^2*x^2
]) + d*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]) + ((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/3 - (2*d*Sqrt[d
 + c^2*d*x^2]*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] - (b*d*Sqrt[d + c^2*d*x^2]*PolyL
og[2, -E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] + (b*d*Sqrt[d + c^2*d*x^2]*PolyLog[2, E^ArcSinh[c*x]])/Sqrt[1 + c^2*
x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.303196, antiderivative size = 249, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {5744, 5742, 5760, 4182, 2279, 2391, 8} \[ -\frac{b d \sqrt{c^2 d x^2+d} \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 x^2+1}}+\frac{b d \sqrt{c^2 d x^2+d} \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 x^2+1}}+\frac{1}{3} \left (c^2 d x^2+d\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 d \sqrt{c^2 d x^2+d} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{c^2 x^2+1}}-\frac{b c^3 d x^3 \sqrt{c^2 d x^2+d}}{9 \sqrt{c^2 x^2+1}}-\frac{4 b c d x \sqrt{c^2 d x^2+d}}{3 \sqrt{c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x,x]

[Out]

(-4*b*c*d*x*Sqrt[d + c^2*d*x^2])/(3*Sqrt[1 + c^2*x^2]) - (b*c^3*d*x^3*Sqrt[d + c^2*d*x^2])/(9*Sqrt[1 + c^2*x^2
]) + d*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]) + ((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/3 - (2*d*Sqrt[d
 + c^2*d*x^2]*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] - (b*d*Sqrt[d + c^2*d*x^2]*PolyL
og[2, -E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] + (b*d*Sqrt[d + c^2*d*x^2]*PolyLog[2, E^ArcSinh[c*x]])/Sqrt[1 + c^2*
x^2]

Rule 5744

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n)/(f*(m + 2*p + 1)), x] + (Dist[(2*d*p)/(m + 2*p + 1), Int
[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p]
)/(f*(m + 2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^
(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 && (RationalQ[m] || EqQ[n, 1])

Rule 5742

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
(f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(f*(m + 2)), x] + (Dist[Sqrt[d + e*x^2]/((m + 2)*Sqrt[1
+ c^2*x^2]), Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(f*
(m + 2)*Sqrt[1 + c^2*x^2]), Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f
, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] || EqQ[n, 1])

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx &=\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \int \frac{\sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx-\frac{\left (b c d \sqrt{d+c^2 d x^2}\right ) \int \left (1+c^2 x^2\right ) \, dx}{3 \sqrt{1+c^2 x^2}}\\ &=-\frac{b c d x \sqrt{d+c^2 d x^2}}{3 \sqrt{1+c^2 x^2}}-\frac{b c^3 d x^3 \sqrt{d+c^2 d x^2}}{9 \sqrt{1+c^2 x^2}}+d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\left (d \sqrt{d+c^2 d x^2}\right ) \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx}{\sqrt{1+c^2 x^2}}-\frac{\left (b c d \sqrt{d+c^2 d x^2}\right ) \int 1 \, dx}{\sqrt{1+c^2 x^2}}\\ &=-\frac{4 b c d x \sqrt{d+c^2 d x^2}}{3 \sqrt{1+c^2 x^2}}-\frac{b c^3 d x^3 \sqrt{d+c^2 d x^2}}{9 \sqrt{1+c^2 x^2}}+d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\left (d \sqrt{d+c^2 d x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{1+c^2 x^2}}\\ &=-\frac{4 b c d x \sqrt{d+c^2 d x^2}}{3 \sqrt{1+c^2 x^2}}-\frac{b c^3 d x^3 \sqrt{d+c^2 d x^2}}{9 \sqrt{1+c^2 x^2}}+d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}-\frac{\left (b d \sqrt{d+c^2 d x^2}\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{1+c^2 x^2}}+\frac{\left (b d \sqrt{d+c^2 d x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{1+c^2 x^2}}\\ &=-\frac{4 b c d x \sqrt{d+c^2 d x^2}}{3 \sqrt{1+c^2 x^2}}-\frac{b c^3 d x^3 \sqrt{d+c^2 d x^2}}{9 \sqrt{1+c^2 x^2}}+d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}-\frac{\left (b d \sqrt{d+c^2 d x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}+\frac{\left (b d \sqrt{d+c^2 d x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}\\ &=-\frac{4 b c d x \sqrt{d+c^2 d x^2}}{3 \sqrt{1+c^2 x^2}}-\frac{b c^3 d x^3 \sqrt{d+c^2 d x^2}}{9 \sqrt{1+c^2 x^2}}+d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 d \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}-\frac{b d \sqrt{d+c^2 d x^2} \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}+\frac{b d \sqrt{d+c^2 d x^2} \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt{1+c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.739786, size = 248, normalized size = 1. \[ \frac{b d \sqrt{c^2 d x^2+d} \left (\text{PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-\text{PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+\sqrt{c^2 x^2+1} \sinh ^{-1}(c x)-c x+\sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sinh ^{-1}(c x) \log \left (e^{-\sinh ^{-1}(c x)}+1\right )\right )}{\sqrt{c^2 x^2+1}}-a d^{3/2} \log \left (\sqrt{d} \sqrt{c^2 d x^2+d}+d\right )+\frac{1}{3} a d \left (c^2 x^2+4\right ) \sqrt{c^2 d x^2+d}+a d^{3/2} \log (x)+\frac{b d \sqrt{c^2 d x^2+d} \left (3 \left (c^2 x^2+1\right )^{3/2} \sinh ^{-1}(c x)-c x \left (c^2 x^2+3\right )\right )}{9 \sqrt{c^2 x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x,x]

[Out]

(a*d*(4 + c^2*x^2)*Sqrt[d + c^2*d*x^2])/3 + (b*d*Sqrt[d + c^2*d*x^2]*(-(c*x*(3 + c^2*x^2)) + 3*(1 + c^2*x^2)^(
3/2)*ArcSinh[c*x]))/(9*Sqrt[1 + c^2*x^2]) + a*d^(3/2)*Log[x] - a*d^(3/2)*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]]
+ (b*d*Sqrt[d + c^2*d*x^2]*(-(c*x) + Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])]
- ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + PolyLog[2, -E^(-ArcSinh[c*x])] - PolyLog[2, E^(-ArcSinh[c*x])]))/S
qrt[1 + c^2*x^2]

________________________________________________________________________________________

Maple [A]  time = 0.158, size = 428, normalized size = 1.7 \begin{align*}{\frac{a}{3} \left ({c}^{2}d{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-a{d}^{{\frac{3}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,d+2\,\sqrt{d}\sqrt{{c}^{2}d{x}^{2}+d} \right ) } \right ) +a\sqrt{{c}^{2}d{x}^{2}+d}d+{b{\it Arcsinh} \left ( cx \right ) d\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }\ln \left ( 1-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{4\,b{\it Arcsinh} \left ( cx \right ) d}{3\,{c}^{2}{x}^{2}+3}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{bd\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it polylog} \left ( 2,-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{bd\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it polylog} \left ( 2,cx+\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{b{\it Arcsinh} \left ( cx \right ) d{x}^{4}{c}^{4}}{3\,{c}^{2}{x}^{2}+3}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{bd{c}^{3}{x}^{3}}{9}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{5\,b{\it Arcsinh} \left ( cx \right ) d{x}^{2}{c}^{2}}{3\,{c}^{2}{x}^{2}+3}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{4\,bdcx}{3}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-{b{\it Arcsinh} \left ( cx \right ) d\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }\ln \left ( 1+cx+\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x)

[Out]

1/3*(c^2*d*x^2+d)^(3/2)*a-a*d^(3/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)+a*(c^2*d*x^2+d)^(1/2)*d+b*(d*(c^
2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*ln(1-c*x-(c^2*x^2+1)^(1/2))*d+4/3*b*(d*(c^2*x^2+1))^(1/2)*d/(c^
2*x^2+1)*arcsinh(c*x)-b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*d+b*(d*(c^2*
x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))*d+1/3*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)*a
rcsinh(c*x)*x^4*c^4-1/9*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)^(1/2)*c^3*x^3+5/3*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2
*x^2+1)*arcsinh(c*x)*x^2*c^2-4/3*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)^(1/2)*c*x-b*(d*(c^2*x^2+1))^(1/2)/(c^2*
x^2+1)^(1/2)*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))*d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (a c^{2} d x^{2} + a d +{\left (b c^{2} d x^{2} + b d\right )} \operatorname{arsinh}\left (c x\right )\right )} \sqrt{c^{2} d x^{2} + d}}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="fricas")

[Out]

integral((a*c^2*d*x^2 + a*d + (b*c^2*d*x^2 + b*d)*arcsinh(c*x))*sqrt(c^2*d*x^2 + d)/x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac{3}{2}} \left (a + b \operatorname{asinh}{\left (c x \right )}\right )}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x))/x,x)

[Out]

Integral((d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x))/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c^{2} d x^{2} + d\right )}^{\frac{3}{2}}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="giac")

[Out]

integrate((c^2*d*x^2 + d)^(3/2)*(b*arcsinh(c*x) + a)/x, x)